Lifelong Machine Learning and root cause analysis for large-scale cancer patient data
نویسندگان
چکیده
منابع مشابه
Lifelong Machine Learning Lifelong Machine Learning
Lifelong machine learning (or lifelong learning) is an advanced machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, and uses it to help future learning. In the process, the learner becomes more and more knowledgeable and effective at learning. This learning ability is one of the hallmarks of human intelligence. However, the current dominant m...
متن کاملRoot Cause and Error Analysis
Error is an inevitable part of life and cannot be completely eliminated, but it can be minimized. A root cause analysis is a technique for understanding the systematic error causes that is involved beyond a person or people to implement an errors and including field and environmental causes of errors when occur in this situation too. An important factor of an error occurrence is a root cause (c...
متن کاملLarge Scale Machine Learning
Cette thèse aborde de façon générale les algorithmes d'apprentissage, avec un intérêt tout particulier pour les grandes bases de données. Après avoir for-mulé leprobì eme de l'apprentissage demanì ere mathématique, nous présentons plusieurs algorithmes d'apprentissage importants, en particulier les Multi Layer Perceptrons, les Mixture d'Experts ainsi que les Support Vector Machines. Nous consid...
متن کاملRoot Cause Analysis of Large Scale Application Testing Results
We present a new root cause analysis algorithm for discovering the most likely causes of differences found in testing results of two versions of the same software. Problematic points in test and environment attribute hierarchies are presented to a user in a compact way which in turn allows saving time on test result processing. We have proven that for clearly separated problem causes our algori...
متن کاملLarge Scale Experiments Data Analysis for Estimation of Hydrodynamic Force Coefficients Part 1: Time Domain Analysis
This paper describes various time-domain methods useful for analyzing the experimental data obtained from a circular cylinder force in terms of both wave and current for estimation of the drag and inertia coefficients applicable to the Morison’s equation. An additional approach, weighted least squares method is also introduced. A set of data obtained from experiments on heavily roughened circul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Big Data
سال: 2019
ISSN: 2196-1115
DOI: 10.1186/s40537-019-0261-9